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Abstract: Because the SARS-CoV-2 virus primarily spreads through droplets and aerosols, a protec-
tive box could provide adequate protection by shielding medical professionals during the intubation
and extubation procedures from generated droplets and aerosols. In this study, size- and time-
dependent aerosol concentrations were measured inside and outside the protective box in the particle
size ranging from 14 nm to 20 pm during simulated intubation and extubation procedures. An
improved protective box with active ventilation was designed based on a plastic bag with armholes
covered with latex sheets that utilizes a supportive frame. Coughing during the intubation and
extubation procedure was simulated using an aerosol generator which dispersed the aerosol powder
into the protective box. During the intubation and extubation procedure, the concentration of par-
ticles increased inside the protective box but, due to the high negative airflow, quickly dropped to
background levels. The particle concentration of all measured particle sizes decreased within the
same time frame. No leakage of particles was observed through the armhole openings. The presented
protective box design provides excellent protection against generated droplets and aerosols. The
decrease in concentration does not depend on the particle size. Outside the box, particle concentration
did not change with time.
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1. Introduction

With the onset of the COVID-19 pandemic, it soon became clear that the SARS-CoV-2
virus primarily spreads through droplets and aerosols that are released when breathing,
talking, and coughing [1-3]. As a response, personal protective equipment (PPE), such as
full face and FFP3 masks and face shields, became mandatory for medical professionals.
Although adequate PPE can provide suitable protection, problems may arise, such as
reduced dexterity and impaired visibility [4], which could be reflected in the number of
errors in medical procedures. The spread of aerosols contaminated with SARS-CoV-2 can,
in certain situations, also pose a problem such as during the intubation and extubation
procedure when large quantities of aerosols are produced by the patient [5,6]. This increases
the probability of an infection for the medical professionals attending the operation as
well as the whole operation room, including all the equipment becoming contaminated.
Lengthy and sometimes costly procedures are used by hospitals to decontaminate operating
rooms [7,8]. This increases costs and renders the operation room unavailable for multiple
hours or even days. These situations could be avoided if the droplets and aerosols generated
by the patient could be contained and filtered without contaminating the operation room.
In some cases, such as laparoscopic and neurological surgery, the use of PPE is not possible
due to specialized equipment used by the surgeon.
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A possible solution for such procedures would be the use of a protective box. The
idea of a protective box first appeared in 2020 [9] and soon, multiple improvements were
published [10-14]. The primary idea is to assemble a box-like object around the patient’s
head and upper torso, which would contain any droplets and aerosols generated by the
patient. The protective box is usually made from transparent polycarbonate panels and/or
foldable plastic sheets. A number of openings are then cut in the panels and/or foldable
plastic sheets for access to the patient by medical professionals.

Although, from the onset of the COVID-19 pandemic, there has been a substantial
number of publications regarding barrier enclosure devices [13], there are only a few
studies where the particle concentration was measured [11,15-18]. In all cases where a
negative airflow was established, the number of detected particles inside the protective
box dropped over time. The number of particles outside the box was lower compared to
measurements where there was no negative airflow.

In the present study, we investigated the size- and time-dependent aerosol removal
from an improved protective box equipped with active filtration during simulated intu-
bation and extubation procedures. The particle concentration was measured within and
outside the protective box in the range from 14 nm to 20 um. The aim of this study was to
investigate whether active filtration prevents aerosols from leaking into the surrounding
air and what are the time and size dynamics of aerosols within the box as it is important to
know when the box can be safely removed without spreading the contaminated aerosols.

2. Materials and Methods
2.1. Improved Protective Box

An improved protective box was designed based on a plastic polypropylene bag
with armholes, covered with natural rubber latex sheets, that utilizes a supportive frame.
Armbholes are cut in the plastic bag in the shape of a cross, which are then covered with
rubber latex sheets. In our case, four armholes were made. The latex sheets are taped to the
bag with strong double-sided tape and a small straight incision is made for the armhole.
As the latex is highly stretchable, the incision can be rather small to form a tight fit with the
arm when it is inserted into the protective box. At the open end of the bag, a stretchable
cord is mounted. The frame is made of nine detachable parts from 8 mm thick PMMA.
When assembled, it forms a cube with the edge 60 cm in size. The plastic bag is pulled over
the frame and below the operating table. Photographs of the protection box are shown in
Figure S1.

2.2. Active Filtration

A powered air-purifying respirator (PAPR) model SR 500 (Sundstrom Safety AB,
Lagan, Sweeden) was used to provide a negative airflow to the protective box. A negative
airflow of 240 L/min was used during the experiments. This model is approved in the
United States of America by the National Institute for Occupational Safety and Health
(NIOSH) for use in environments where hazards are known and characterized and can be
used as an alternative to filter respirators. This model is an indispensable part of many
COVID-19 wards in hospitals all around the world.

2.3. Aerosol Generator

An aerosol standard powder (ISO 12103-1 A1, DMT, Germany) [19] was dispersed in
the protective box during measurements with a Topas SAG 410 (Topas GmbH, Dresden,
Germany) aerosol generator with the feed rate of 0.1 and preparation 3/7. The outlet air
flow through the aerosol generator was approximately 8 L/min.

2.4. Scanning Mobility Particle Sizer

The nanoparticle total concentration and time-dependent size distribution was mea-
sured with a scanning mobility particle sizer (SMPS, electrostatic classifier model 3080; TSI
Co., Shoreview, MN, USA) equipped with desiccator, soft X-ray neutralizer, long differ-
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ential mobility analyzer (DMA, model 3081; TSI Co., Shoreview, MN, USA), and a water
condensation particle counter (WCPC; model 3785; TSI Co., Shoreview, MN, USA). The
sheath flow rate through the DMA was 4 L/min, while the aerosol flow rate through
the WCPC was 1 L/min. No impactor was used upstream the neutralizer as it had no
impact on the particle distribution. The SMPS was operated with the Aerosol Instrument
Manager version 9.0.0.0, where multiple charge correction and diffusion correction were
enabled. The inverted SMPS measurements were further analyzed using our own software
written in Mathematica. The electrical mobility diameter was from 14 nm to 461 nm.
The measurements were performed as successive size scans, with a 1-min duration of a
single scan.

2.5. Laser Aerosol Particle Counter

A LAP 340 Laser Aerosol Particle Counter (LAPC) (Topas GmbH, Dresden, Germany)
equipped with a DIL 554 Aerosol Dilution System (Topas GmbH, Dresden, Germany) was
used to measure the particle concentration in the size range from 0.3 pm to 20 um. The
sheath flow rate of the LAPC was 28.3 L/min. The LAPC was turned on for 5 s every 30 s
(5 s on, 25 s off) to minimize the impact on the particle concentration. The particle analyzing
software PASWin was used to operate the LAPC. The inverted LAPC measurements were
further analyzed using our own software written in Mathematica.

2.6. Experimental Arrangement

The experimental arrangement is schematically shown in Figure 1A,B while a schematic
of a real-life use is shown in Figure 1C. For the purpose of the measurements, the protective
box was placed within a bigger wooden-polycarbonate cube with the edge 1.2 m in size.
With the outer box, the particle concentration outside the protective box was kept constant
and as low as possible. Low and constant particle concentrations are needed to accurately
determine if any particles escape from the protective box during the simulation of the
intubation and extubation procedure.

The SMPS, LAPC, and the aerosol generator were kept outside the outer box, while the
PAPR was placed within the protective box. In our case, the PAPR would be positioned on
the patient as it is quite light and should not pose a problem. The used PAPR model could
be equipped with inlet hoses. With such a configuration the PAPR could be positioned
outside the protection box and only the inlet hoses would be connected to the protection
box, as shown in Figure 1C. To simulate the body of a patient, a box in the size of an average
person was placed at the open end of the plastic cover, which was loosely tightened before
the experiments. The outlet of the PAPR was situated outside the protective box but inside
the outer box. In this way, the particle concentration within the outer box was kept constant
and as low as possible and there was no net air flow between the inside and the outside
of the outer box. A high efficiency particulate air (HEPA)-filtered air outlet was also used
during the experiments to simulate oxygenation and preoxygenation. The outlet of the
aerosol generator and the HEPA-filtered air outlet were positioned at the bottom of the
protective box facing upwards, as schematically shown in Figure 1A,B.

Particle concentration measurements were performed inside and outside the protective
box. Inside the protective box, the sampling site was near the hand openings designated
for the anesthesiologist, while on the outside, the sampling site was in front of the hand
openings where the particle concentration would be highest if there was any leakage. Three
measurements were performed inside and two measurements outside the protective box.

2.7. Simulation Procedure
2.7.1. Cough Calibration

The number of particles generated with a single cough was calculated according to
literature [20]. First, the protective box was blown for 10 min with HEPA-filtered air with a
flow of 100 L/min to remove background aerosols from the box. To simulate a cough, the
ISO 12103-1 A1 powder was dispersed into the protective box with the aerosol generator
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for 5 s with the feed rate of 0.1. After 5 min, the particle concentration was measured. Three
consecutive measurements were performed. The whole procedure was repeated twice to
obtain an average particle concentration after a simulated cough. It was assumed that:
(a) the aerosol dispersed equally throughout the chamber; and (b) the particle concentration
was highest 5 min after the aerosol generator was turned on. Equation (1) was used to
determine the number of particles (#) generated with a single simulated cough

#
Cough = (dNSmin - dNbackground) VbOX/ (1)

where dNspi,, is the number of particles per cm? after 5 min, dN, background the number of
particles per cm? before the aerosol generator was turned on, and Vy,, is the volume of
the protective box. On average, 8 x 107 particles per cough were generated, which is
almost twenty times more particles than the average number of particles generated by
live subjects [20]. The size distribution of generated aerosols, Figure S2, agrees well with
literature [21].

A) [ swps | B)| swes
I 1
LAPC LAPC
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X
aerosol o aerosol
generator - N generator
HEPA-filtered —L HEPA-filtered
air | air |
I
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Figure 1. (A,B) A schematic representation of the experimental setup. The arrows indicate the direction of the aerosol/air. In

(A), the side where the operator (anesthesiologist) would be is shown, while in (B), the side where the assistant (anesthetic

technician) would be is shown. Blue squares represent armholes covered with latex sheets. (C) A schematic representation

of the box used on a patient with the inlet hoses connected to the PAPR. The bag (light blue) would enclose the patient and

the table and would be sealed at one end with an elastic band (yellow).

2.7.2. Intubation Procedure

The timeline of the simulated intubation procedure is schematically shown in Figure 2A)
and is presented in Table 1. In phase 1, the background particle concentration was measured.
Then, the HEPA-filtered air with the flow of 10 L /min was turned on to simulate the air
flow of preoxygenation, which could have an impact on the particle concentration. At
the same time, the aerosol generator was turned on to simulate coughing. The aerosol
generator was turned on once per minute to simulate mild to light coughing. In phase 3,
the aerosol generator was turned off, while the HEPA-filter air still flowed with 10 L/min
for another 2 min to simulate the ventilation with air before the intubation and after the
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patient has been put under anesthesia. In phase 4, the HEPA-filtered air was turned off
and the decrease of particle concentration was measured for 10 min.
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Figure 2. A schematic representation of the simulated (A) intubation and (B) extubation procedure.

Table 1. Timetable of the intubation procedure.

Time (min) Cough HEPA-Filtered Air Phase
0-3 OFF OFF 1
3-8 1 cough per minute 10 L/min 2
8-10 OFF 10 L/min 3
10-20 OFF OFF 4

2.7.3. Extubation Procedure

The simulation of the extubation procedure is schematically shown in Figure 2B and is
presented in Table 2. In phase 1, the background particle concentration was measured. Then,
the HEPA-filtered air with the flow of 10 L/min was turned on to simulate oxygenation
after extubation as well as the aerosol generator to simulate coughing. In phase 2, the
aerosol generator was turned on for 5 s every 20 s (5 s on, 15 s off). This simulated intense
coughing usually observed after extubation. In phase 3, the aerosol generator was turned
on only once a minute. In phase 4, the aerosol generator was turned off, while the HEPA-
filter air still flowed with 10 L/min for 2 min. In phase 5, the HEPA-filtered air was also
turned off and the decrease of particle concentration was measured for 6 min.

Table 2. Timetable of the extubation procedure.

Time (min) Cough HEPA-Filtered Air Phase
0-3 OFF OFF 1
3-6 3 coughs per minute 10 L/min 2
6-12 1 cough per minute 10 L/min 3
12-14 OFF 10 L/min 4
14-20 OFF OFF 5
3. Results

3.1. Intubation

The total particle concentration, averaged over three measurements, measured inside
and outside the protective box during the simulation of the intubation procedure is shown
in Figure 3. In phase 1, the background total concentration was measured. As it can
be seen from Figure 3, the background concentration was low and relatively stable. In
phase 2, the aerosol generator was turned on as described above. The total concentration
inside the protective box rapidly increased and stayed elevated throughout phase 2. In
phase 3, the aerosol generator was turned off and only the HEPA-filtered was is blown
into the protective box. The total concentration rapidly decreased. It reached background
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Total concentration (#/cm)

levels in phase 4, 2 min after the HEPA-filtered air was turned off. The decrease in the
concentration did not depend on the particle size as concentrations of all particle sizes
decreased exponentially and reached background concentrations at the same time, Figure 4.
Outside the protective box, the total concentration was constant over the course of the
experiment, indicating that no particles escaped from the protective box. Throughout the
whole measurement, the PAPR was on, which in combination with the SMPS and LPC,
provided a negative airflow of 249 L /min.
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Figure 3. Total concentration measured with the (A) SMPS and (B) LPC inside and outside the protective box during the

simulation of the intubation procedure. Numbers 1 to 4 represent different phases of the intubation procedure.
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Figure 4. Normalized concentration for different particle sizes from (A) SMPS and (B) LPC inside the protective box during

the simulation of the intubation procedure. Numbers 1 to 4 represent different phases of the intubation procedure.

3.2. Extubation

The total particle concentration, averaged over three measurements, measured inside
and outside the protective box during the simulation of the extubation procedure was
shown in Figure 5. In phase 1, the background total concentration was measured, which
was low and relatively stable. In phase 2, the aerosol generator was turned on as described
above. The total concentration rapidly increased inside the protective box and was larger
compared to the intubation procedure due to multiple coughs per minute. In phase 3, the
total concentration decreased as the number of coughs per minute decreased. In phase 4,
the aerosol generator was turned off and only the HEPA-filtered air was blown into the
protective box. A spike in the particle concentration in phase 4 was probably due to some
dust powder still present in the chamber. The total concentration rapidly decreased and
reached background levels a few minutes into phase 5, when the HEPA-filtered air was
turned off. The decrease in the concentration did not depend on the particle size, Figure 6.
Outside the protective box, the total concentration was constant over the course of the
experiment, indicating that no particles escaped from the protective box. Throughout the
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whole measurement, the PAPR was on which in combination with the SMPS and LPC,
provided a negative airflow of 249 L /min.
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Figure 5. Total concentration measured with the (A) SMPS and (B) LPC inside and outside the protective box during the

simulation of the extubation procedure. Numbers 1 to 5 represent different phases of the extubation procedure.
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Figure 6. Normalized concentration for different particle sizes from (A) SMPS and (B) LPC inside the protective box during
the simulation of the extubation procedure. Numbers 1 to 5 represent different phases of the extubation procedure.

4. Discussion

Different barrier enclosure devices were reported, from plastic boxes to just plastic
sheets [13]. Plastic boxes usually lack portability and the ability to accommodate an
airway assistant, while plastic sheets do not block aerosols generated by the patient. Our
protective box is based on a plastic bag with armholes covered with latex sheets that utilizes
a supportive frame. The modular nature of the supportive frame makes our protective box
portable as well as easy and quick to assemble. The plastic bag can have multiple armholes
for medical professionals and provides excellent protection against droplets and aerosols.
The improved design of the hand aperture, which is covered with a latex sheet, provides
a perfect fit for the arms, superb maneuverability, and prevents any leakage of droplets
and aerosols towards medical professionals. The open end of the bag can be adjusted
according to the patient size and allows the insertion of various tubing. In our case, we
used a PAPR usually used by medical professionals in high-risk environments. As it is
certified as medical equipment, it can be readily used in operation rooms.

During the simulated intubation and extubation procedures, the particle concentration
inside the protective box increased when the aerosol generator was turned on. The rapid
decrease in the particle concentration after the aerosol generator was turned off is attributed
to the negative airflow provided by the PAPR. The high negative airflow is mandatory
to prevent any aerosol leakage from the protective box. Without the PAPR, the particle
concentration inside the intubation box decreases very slowly and some particles leak out
through the hand openings. During the oxygenation and preoxygenation procedure the
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positive airflow decreases the pressure difference made by the PAPR. Only a sufficient
negative airflow ensures that there is no leakage of particles through the armholes. As each
barrier enclosure device is different, a sufficient negative airflow can only be determined
through an experiment and supported by calculations [22]. Our experiments show that
concentrations of all measured particle sizes decrease within the same time frame. In our
experiment, the number of particles dropped to background levels within the first 5 min,
when the aerosol generator was turned off.

Once the intubation/extubation procedure is finished, the plastic bag can be removed
and discarded while the supportive frame can be sterilized in an autoclave or wiped with a
disinfectant. The bag would be discarded after the procedure which could require special
training for the medical professionals. Although the bag itself together with the latex sheets
is rather cheap (in the order of 10 EUR), it would produce a fair amount of waste. The use of
the protective box in certain hospital settings would probably outweigh the environmental
impact of the generated waste.

Although concerns have been raised that protective boxes could hinder and potentially
delay airway management [23], the results differ and not all studies come to the same
conclusions [24]. With proper training and good protection box design, the current obstacles
could be overcome.

The comfort of the operator and the patient must also be taken into consideration. So
far, studies have shown [24,25] that patients feel comfortable inside protection boxes but
this could depend on the protection box design. Patients should not feel uncomfortable
while inside the protection box as this could render the intubation process more difficult.
The operator should also feel comfortable while operating with a protection box to prevent
multiple intubation attempts and prolonged intubation times. Discomfort for the operator
was usually caused due to restricted movement affecting airway maneuvers, additional
mental capacity during intubation, the stylet hitting the top of the box, and impaired vision
of the patient [24-26].

The main limitation of this study is the use of only one protective box design and fixed
parameters such as negative airflow and single measuring positions inside and outside the
protective box. By varying the negative airflow, a minimum value could be obtained, when
no aerosols are leaked from the protective box. This would also change the time dynamics
of the aerosols inside the protective box. Different measuring positions would provide a
better understanding if any aerosols leak from the protective box or remain afloat within it
due to insufficient airflow.

This study shows that a protective box equipped with an active filtration device
provides adequate protection against droplets and aerosols for the medical professionals
dealing with infected patients during intubation and extubation procedures. As the protec-
tive box also prevents any leakage of droplets and aerosols in the operation room, it does
not have to be decontaminated afterwards. Standardized protocols should be established
to test the viability of different types of protective boxes which should prevent aerosols
escaping from the box as well as a fast decrease of particle concentration within the box.

5. Conclusions

A protective box design based on a plastic bag with armholes covered by latex sheets
that utilizes a supportive frame and is equipped with an active filtration device was
created. It provides excellent protection against generated droplets and aerosols and offers
exceptional portability and maneuverability. Size- and time-dependent measurements
of a simulated intubation and extubation procedure were made for aerosols 14 nm to
20 um in size, inside and outside the protective box. Inside the protective box, the particle
concentration increased during cough simulation and decreased to background levels
within 5 min after the aerosol generator being turned off. The decrease in the concentration
does not depend on the particle size. Outside the intubation box, the particle concentration
did not change with time. Additional tests have to be performed to fully evaluate the
efficiency of the presented protective box.
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Similar to other PPE, a performance standard should be established for different types
of protective boxes. Working with an untested protective box could give a false sense of
security which could do more harm than good.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/covid1010025/5s1, Figure S1: (A) The assembled PMMA frame. (B,C) Plastic polypropylene
bag with armholes, covered with natural rubber latex sheets. Figure S2: Normalized concentration
spectra (dN/dlogDp) of (A) SMPS and (B) LPC during the cough calibration.
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